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Abstract
Flexible ionic conductive electrodes, as a fundamental component for electrical signal transmission, play
a crucial role in skin-surface electronic devices. Developing a skin-seamlessly electrode that can
effectively capture long-term, artifacts-free, and high-quality electrophysiological signals, remains a
challenge. Herein, we report an ultra-thin and dry electrode consisting of deep eutectic solvent (DES) and
zwitterions (CEAB), which exhibit signi�cantly lower reactance and noise in both static and dynamic
monitoring compared to standard Ag/AgCl gel electrodes. Our electrodes have skin-like mechanical
properties (strain-rigidity relationship and �exibility), outstanding adhesion, and high electrical
conductivity. Consequently, they excel in consistently capturing high-quality epidermal biopotential
signals, such as the electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG)
signals. Furthermore, we demonstrate the promising potential of the electrodes in clinical applications by
effectively distinguishing aberrant EEG signals associated with depressive patients. Meanwhile, through
the integration of CEAB electrodes with digital processing and advanced algorithms, valid gesture control
of arti�cial limbs based on EMG signals is achieved, highlighting its capacity to signi�cantly enhance
human-machine interaction.

Introduction
Flexible ionic conductive electrodes play a pivotal role in skin-surface electronic devices by facilitating
electrical signal transmission1–4. They are indispensable for tasks such as continuous, non-invasive
health monitoring5–7 and swift, e�cient human-computer interactions8–10. For effective long-term
acquisition of electrophysiological signals from the skin surface, electrode materials must possess
speci�c attributes: adhesion11–13, stretchability13,14, Young's modulus similar to skin14,15, excellent
conductivity16,17, and self-healing18–21 after external damage. Two types of skin electrodes: metal dry
electrodes22–27 and hydrogel wet electrodes28,29, are available on the market. While metal dry electrodes
have stable physical and chemical characteristics, their limited stretchability and adhesive capabilities
can cause signal distortions due to human movement30–32. In contrast, hydrogel electrodes excel in
biocompatibility33,34, conductivity, and skin conformity35. Yet, they lose water over time36, diminishing
their conductivity, stretchability, and softness; especially freezing at low temperatures and dehydration at
high temperatures can compromise signal acquisition37,38.

Deep eutectic solvents (DESs) are promising, safe, and stable alternatives to conventional soft ionic
conductors39,40. Comprising hydrogen bond donors (e.g., ethylene glycol, EG) and acceptors (e.g., choline
chloride, ChCl)40,41, these solvents are water-free, have low vapor pressure, and exhibit strong conductivity
and biocompatibility42,43. The composite advantages of DESs have spurred rapid development in ionic
conductors44,45. Li et al combined acrylic acid (AA) with DESs to prepare the DES gel with stretchability (> 
1000%), high conductivity (1.26 mSžcm− 1), and high adhesion to the skin (~ 100 Nžm− 1)46. Despite
these advancements, creating a DES gel with both self-healing and skin-like mechanical properties
remains a challenge. Human skin is self-repairable, restoring both its mechanical and electrical
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functionalities47. Distinctively, human skin exhibits a nonlinear stress-strain relationship, resembling the
shape of J48–50. While it feels soft upon touch, and swiftly stiffens under high strains to prevent damage.
Inspired by skin’s mechanic properties, a hybrid network that blends weakly complex zwitterions with
robust hydrogen bond interactions can emulate skin's softness while rapidly stiffening under strain,
mimicking its protective mechanism.

In this study, we develop an ionic, conductive, compliant, dry, adhesive, and self-healing electrode for
epidermal electrophysiology monitoring, depression detection, and human-machine interaction. We use
ChCl and EG as the deep eutectic solvent (DES), betaine as the zwitterionic network and crosslinker, and
AA to form the conductive framework. This novel CEAB electrode surpasses traditional Ag/AgCl gel
electrodes in epidermal biopotential monitoring. It ensures improved conductivity across a wide
temperature range, offers gentle conformability to the skin, and signi�cantly reduces noise levels during
dynamic detections. we can use the CEAB electrodes to capture high-quality epidermal biopotential
signals consistently, such as electrocardiogram (ECG), electromyogram (EMG), and
electroencephalogram (EEG)51, even amidst movement. Furthermore, we develop a machine-learning
algorithm that effectively identi�es abnormal EEG patterns in patients with depression. Meanwhile, by
integrating this electrode with shallow CNN (Convolution Neural Network) algorithm, we demonstrate
prosthetic limb control as gesture replication based on EMG signals. A comparison of CEAB electrodes to
representative electrodes for biopotential applications is shown in Supplementary Table 1.

Results
Fabrication and characterization of CEAB

We �rst develop a method to prepare CEAB �lm with controlled thickness and scalability, based on the
pressure exertion. The fabrication process of the electrode is illustrated in Fig. 1b (Further setup details in
Supplementary Fig. S1a). Firstly, the DES is synthesized by mixing ChCl and EG stirred at 80 ℃ for 20
mins. Then monomer AA is dissolved in DES to form a clear solution46. After that, the betaine as
zwitterion, and Irgacure 2959 as the photoinitiator are dissolved in the solution to prepare the CEAB
precursor. The precursor solution consists of ChCl, EG, AA, and betaine in a molar ratio of 2:4:4:1, and the
weight percentage of Irgacure 2959 is 0.1% (Fig. 1a). The transparent precursor (Supplementary Fig. S1b)
is then cast between two pieces of Polyethylene terephthalate (PET) supporting �lms, covered by a �at
glass mold, different forces are exerted on the surface to generate precursor layer with different
thickness. Upon polymerization of the precursor using UV light (365 nm, 10 W power, 5 min), the resulting
CEAB gel serves as an adhesive and stretchable dry electrode for capturing epidermal biopotentials such
as ECG, EMG, and EEG (Fig. 1d).

The thickness of the CEAB �lm is in�uenced primarily by two main factors: the magnitude and duration
of pressure. Ensuring proper duration of pressure facilitates precursor diffusion between the PET �lms,
subsequently impacting the �lm's thickness post-photopolymerization. Precursor diffusion largely
completes within 5 minutes under free load, as evidenced in Supplementary Movie 1. Therefore, we set
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the pressure duration to 5 minutes. Figure 2a demonstrates that the CEAB �lm's thickness can be varied
via the applied forces on the glass surface. Speci�cally, when controlling the pressure from 4109 to 0 Pa,
the thickness is changed from 3.55 µm to approximately 46.9 µm. For �lms with a thickness surpassing
50 µm, we employ a molding strategy. This involves placing a spacer with a speci�c thickness between
two glass plates and PET support �lms, followed by �lm removal post-curing. We coat the PET �lm's
surface with silicone oil to ease the CEAB �lm's separation, a critical step for maintaining the structural
integrity of sub-5µm freestanding samples52. Scanning electron microscope (SEM) and atomic force
microscope (AFM) (Fig. 2b and 2c) both show the freestanding CEAB �lm's smooth morphology,
indicating considerable macro-scale homogeneity. Moreover, the AFM height image reveals that the CEAB
�lm's surface roughness remains below 10 nm (Fig. 2c and Supplementary Fig.S2). In comparison to
traditional techniques, our pressure-diffusion approach can provide a broad �lm thickness control range
and extensive surface homogeneity. Supplementary Fig. S3 further illustrates the self-adhesion of a 200
µm thick CEAB �lm on the palm, showcasing its capability to replicate complex, curved surfaces over
large areas.

The 200 µm CEAB �lm demonstrates an impressive optical transmittance exceeding 95% between 400–
800 nm wavelengths (Fig. 2d). This exceptional transmittance results from macroscopic averaging of
compositional and structural factors. Furthermore, a QR code enveloped by this CEAB �lm remains
effortlessly scannable, as depicted in the inset of Fig. 2d. Utilizing Attenuated Total Re�ection-Fourier
Transform Infrared (ATR-FTIR) spectroscopy, we delineate the characteristic peaks of the CEAB �lm and
discern their interactions (Fig. 2e). CEAB �lm and EG show OH peak at 3307 cm− 1 and 3297 cm− 1, this
redshift of OH group indicates the hydrogen bond formation53, which is a characteristic of DES. For
CEAB, both the ν(C = O) of AA and betaine shift to higher wavenumbers, while ν(C-N) of betaine shift to
lower wavenumbers, suggesting the formation of [N(CH3)3]+:[COO−] ion pairs50,54. Additionally,
thermogravimetric analysis (TGA; Fig. 2f) con�rms the �lm's exceptional temperature stability, with
minimal weight loss (< 5%) until 82.5°C, and a decomposition temperature nearing 240°C, suitable for
high demanding conditions. Concurrently, differential scanning calorimetry (DSC) in Fig. 2g establishes
that the CEAB's glass transition temperature (Tg) remains below − 60°C, underscoring its �exibility even at
low temperatures. Supplementary Fig. S4 further demonstrates the �exibility of 2 mm thick CEAB �lm
that it can be easily twisted at both 25 ℃ and − 30 ℃. Figure 2h reveals that, in contrast to Ag/AgCl
hydrogel, the CEAB gel exhibits a weight increase of approximately 15% at 60% relative humidity (RH) and
experiences minimal weight loss (below 5%) at 10% RH over 7 days. This result underscores the CEAB
�lm's potential for effective epidermal moisture retention. Figure 2i details the temperature-dependent
ionic conductivity within a range of -50 to 60°C. To determine the electrical conductivity (σ) of CEAB �lm,
the formula σ = d/RS is employed, where d represents the gel thickness, S signi�es the gel area, and R
denotes the value where the plot intersects the Z' axis. As temperature ascends, CEAB exhibits enhanced
conductivity; for instance, its conductivity registers as 1.69 × 10− 2, 1.33, and 8.18 mS·cm− 1 at
temperatures of -25°C, 25°C, and 60°C respectively (Supplementary Fig. S5a). Besides, the ionic
conductivity's temperature dependency follows with the Vogel − Fulcher − Tammann (VFT) relationship55,
demonstrating a robust congruence between theory and empirical �ndings (Supplementary Fig. S5b).
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Such elevated conductivities arise from rapid proton migration within the CEAB at high temperatures,
inferred from its composition. DES contains ionized components such as hydrogen donors and hydrogen
acceptors, which offer more protons to increase the conductivity. In addition, the low melting point of DES
contributes to the free mobility of the protons, thus providing high conductivity of CEAB.

Mechanical properties and self-healing ability

Mechanical properties akin to the skin are pivotal for the application of epidermal electrodes, serving as a
seamless interface between skin and electronics14,15. To evaluate the mechanical attributes of the CEAB
�lm, a uniaxial tensile setup is employed. The true stress-strain curve (Fig. 3a) of the CEAB �lm, varying in
thickness, reveals strain-stiffening behaviors reminiscent of skin. This indicates the �lm presents a soft
texture upon initial touch but swiftly stiffens, safeguarding against damage under elevated strains.
Additionally, Young’s moduli of the CEAB �lms range from 3.23 to 59.74 kPa, aligning with values
measured in the �brous dermis (35–150 kPa) and the hypodermis (2 kPa)56. As delineated in
Supplementary Table 2, Young’s modulus increases twentyfold as the �lm's thickness dwindles from 500
µm (3.23 kPa) to 3.55 µm (59.74 kPa). This enhancement stems from denser cross-linking for thinner
precursors under identical UV exposure durations. Impressively, the CEAB �lm can stretch approximately
800% (engineering strain) of its original length without exhibiting discernible mechanical failure, a
capability aligning well with on-skin electronics requirements, given that skin typically endures a
maximum strain of around 30%56.

CEAB gel demonstrates rapid self-healing attributes, which meet the requirement of an ideal epidermal
electrode that self-recovers from external mechanical damage. As depicted in Fig. 3b, the scar on the
CEAB �lm vanishes entirely within 10 minutes at room temperature, with bubbles near the scar
dissipating within 8 hours (Supplementary Movie 2). This self-healing process is attributed to the
electrostatic interaction in betaine, reversible H-bonds in ChCl, EG, and polyacrylic acid, facilitating
polymer chain diffusion at the interfaces. To assess CEAB �lm's self-adhesion on porcine skin, a 90°
peeling experiment is conducted, as illustrated in Fig. 3c. Within a thickness range from 3.55 µm to 500
µm, the CEAB exhibits a peeling interface toughness ranging between 5–20 J/m2, demonstrating strong
adhesive capability for artifact-resistant epidermal electrical signal collection during movement.
Supplementary Fig. S6a-d further veri�es the strong adhesion to plastic tubes, paper, PET �lm, and rubber
gloves respectively. Concurrently, the 500 µm CEAB �lm demonstrates a shear strength of 63 kPa on the
porcine skin (Fig. 3d), translating to a maximal shear force of 12.60 N—70 times of the 90° peel force
(0.18N). Despite its superior adhesive qualities, the CEAB �lm allows for effortless and comfortable
removal, as depicted in Fig. 3e. Unlike conventional tapes (3M VHB) that often induce discomfort due to
excessive adhesion and residual islands, the CEAB �lm ensures a user-friendly detachment.

Conformability and biocompatibility

CEAB �lms demonstrate remarkable conformability across diverse rough surfaces. Two primary factors
in�uencing a material's conformability are its Young’s modulus and thickness; a decrease in both
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parameters enhances the material's ability to conform to irregular surfaces57. Supplementary Fig. S7a-d
reveal that both 50 µm and 200 µm CEAB �lms adhere tightly to human skin due to their ultrasoft nature,
fostered by hydrogen bonding on both the electrode-skin boundary and internal electrode, as well as weak
electrostatic interactions in the electrode. These CEAB �lms readily accommodate skin deformations,
such as stretching and squeezing. In Supplementary Fig. S8a-c, a 50 µm CEAB �lm a�xed to the dorsal
hand synchronizes with skin movements seamlessly—elongating upon stretching and forming wrinkles
similar to skin creases during compression. In contrast, a 50 µm PET adhesive tape partially loses
contact with the skin, failing to emulate the skin's subtle wrinkles due to modulus disparities between the
skin and the PET �lm. Additionally, the 50 µm CEAB �lm exhibits conformal adhesion to fruit peels,
including apples and avocados, as depicted in Supplementary Fig. S9, whereas PET tape demonstrates
partial attachment from these fruit surfaces.

Besides, since the geometry of the glyphic patterns at hands varies at the different locations, 3.55 µm and
200 µm thick CEAB �lm are attached to different regions of the hand to investigate the local texture
conformability, including distal phalanges, proximal phalanges, metacarpophalangeal, and palm. Silicon
rubber is used as the human hand replica, and bare skin without an attached electrode is captured to
demonstrate the primitive morphology. As depicted in Fig. 4a, with 3.55 µm thick CEAB �lm covering the
surface, glyphic lines on proximal phalanges and metacarpophalangeal, including primary, secondary,
tertiary, and even quaternary lines can be distinguished under the optical microscope. Additionally, the
3.55 µm thick CEAB �lm precisely conforms to the ridges and valleys, revealing �ne structures including
dense and directionally varying grooves, as well as irregular elevations between furrows with high
resolution. The intimate contact between the �ngerprint replica and 3.55 µm CEAB �lm is further
investigated using SEM (Fig. 4b), which reveals a secure adherence of the 3.55 µm CEAB �lm to the
�ngerprint replica, indicating distinct ridges and valleys with no detectable formation of air gaps.
However, as the thickness of the CEAB �lm increases to 200 µm, the ability to discern �ne structures such
as grooves and papules is restricted due to a size mismatch; speci�cally, the depth between ridges and
valleys is typically less than 60 µm58. Nonetheless, covered by the 200 µm CEAB �lm, the ridges, and
valleys on the distal phalanges and palm remain discernible due to their ultrasoft mechanical properties.
In agreement with optical images, ridges, and valleys can be discerned on the metacarpophalangeal
replica covered by 200 µm CEAB �lm, with no observable air gaps due to the ultrasoft mechanical
properties.

The cytotoxicity assay with NIH3T3 cells proves the biocompatibility of CEAB gel that is suitable for on-
skin applications (Fig. 4c). As depicted in Fig. 4d, for both the control group and the CEAB-conditioned
group, NIH3T3 �broblasts exhibit a �attened morphology after 12-hour incubation, followed by the
development of �ne cytoplasmic extensions after 24 hours of incubation. The water vapor transmission
ability of CEAB �lm is compared with common interactive materials for human-machine interface
substrates, such as PDMS and Parylene. After 5 days, CEAB had nearly 50% water vapor transmission,
while PDMS and PET only had 10% or less water vapor transmission (Fig. 4e). This indicates that CEAB
�lm, as a wearable electrode material, will not block the skin surface and affect skin respiration. We
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summarize the overall comparison of our CEAB �lm with the most representative ionic gels in
Supplementary Table 3.

Electrode/skin contact impedance and epidermal biopotential detection

The electrode/skin contact impedance within 1 h of the CEAB electrode is measured in the frequency
range of 1-104 Hz. The CEAB electrode shows stable electrode/skin contact impedance (Supplementary
Fig. S10a). The average electrode/skin impedance with 1 h of CEAB electrode is much lower than the
commercial Ag/AgCl gel electrode, i.e., 284.259 kΩ, 1873.981 kΩ for the former and 337.698 kΩ,
2450.774 kΩ for the latter at 100 Hz and 10 Hz, respectively (Supplementary Fig. S10b). Stable and lower
electrode/skin contact impedance contributes to high-quality biopotential acquisition. The wearable 200
µm CEAB electrodes are employed to investigate epidermal ECG, EMG, and EEG. Figure 1d illustrates two
CEAB electrodes attached to a volunteer's chest for ECG signal recording. Notably, rhythm-related
parameters—including P, Q, R, S, and T waves—are distinctly identi�able in both static and dynamic
states, crucial for clinical diagnoses59, as shown in Fig. 5a. In contrast, the Ag/AgCl gel electrode exhibits
higher noise levels and unstable peaks during motion. Bene�tting from its robust adhesion and
conformability, the CEAB electrode has superior signal-to-noise ratios (SNR) of 32.7 dB and 29.9 dB in
static and dynamic states, respectively, surpassing the 28.0 dB and 18.8 dB of the Ag/AgCl gel electrode,
as depicted in Fig. 5b. This performance underscores the CEAB electrode's resilience against motion
artifacts.

Additionally, to capture muscle biopotentials, two CEAB electrodes are a�xed to the forearm as working
electrodes, while one is placed on the elbow as a reference electrode. By sustaining a grip force of 50 N,
we assess the SNR and noise level of CEAB electrodes during EMG signal acquisition. Figure 5c
illustrates the noise analysis using RMS (root mean square) on baseline signals acquired during rest
periods. The average noise level of the CEAB electrode (21.7 µV) is reduced by 33.6% over the 3.5 h
monitoring period compared to the Ag/AgCl gel electrode (32.7 µV). Furthermore, the CEAB electrodes
consistently outperform Ag/AgCl gel electrodes in SNR, averaging 12.5 dB—a 48.9% improvement over
the 18.7 dB of the Ag/AgCl gel electrodes. This evidence solidi�es that CEAB electrodes offer superior
noise reduction and enhanced SNR compared to commercially available Ag/AgCl gel electrodes.
Subsequent tests involving varied grip forces of 50 N, 320 N, and 650 N con�rm that EMG signals remain
distinguishable, aligning with the Ag/AgCl gel electrodes (Fig. 5d). Notably, the CEAB electrode captures
more stable EMG signals with minimal baseline �uctuations, demonstrating superior reliability.
Supplementary Fig. S11 further illustrates that CEAB electrodes effectively differentiate EMG signals
across various hand gestures, essential for human-machine interface applications. Coincidently,
Supplementary Movie 3 further demonstrates the EMG signals of the forearm during various single-�nger
and hand movements.

The facial muscles typically exhibit non-uniform distribution, and facial skin is prone to wrinkles
development with facial expressions, undergoing substantial deformation60. Acquiring stable and high-
quality facial EMG signals using �exible electrodes with excellent conformality remains a signi�cant
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challenge. To ascertain the e�cacy of CEAB electrodes as pro�cient facial EMG electrodes, we collect
facial EMG data during volunteers' smiling episodes, with Ag/AgCl gel electrodes serving as a reference.
As illustrated in Fig. 5e, both electrodes demonstrate the capability to capture signals of good quality
during volunteer smiles. However, the CEAB electrodes exhibit lower baseline noise. Throughout the entire
data-acquisition process, the signals acquired by the CEAB electrodes have consistent baseline noise
levels. In contrast, with an increasing time of smiles, substantial noise emerges between adjacent peaks
for the Ag/AgCl gel electrode after 4 seconds. This occurrence can be attributed to the wrinkles induced
by smiling, leading to motion artifacts between the Ag/AgCl gel electrode and the skin surface. The
superior stretching ability and Young's modulus comparable to that of the skin of CEAB �lm facilitate
accurate EMG signal acquisition, particularly during facial motion.

Given the CEAB electrode's superior resistance to motion artifacts, minimal baseline noise, and enhanced
SNR compared to Ag/AgCl gel electrodes, we utilize it for long-term EEG recordings on a volunteer,
spanning up to 12 hours. Throughout this long duration, the volunteer is engaged in varied activities,
including sleep, exercise, and relaxation. Notably, the quality of EEG signals remains consistent, even
when the volunteer perspires during physical activities. Figure 5f illustrates three distinct EEG signals
corresponding to different mental states: heightened activity during exercise and reduced activity during
sleep. By employing fast-Fourier transformation (FFT), we segment the EEG brainwaves into speci�c
frequency bands: δ (0-2.5 Hz), θ (3.5–6.75 Hz), α (7.5-11.75 Hz), β (13–30 Hz), and γ (31–50 Hz)61. The β
waves, are associated with increased energy levels and can re�ect the degree of mental concentration
and physical involvement62,63. Then we extract the β wave from the signal and compare the discrepancy.
As depicted in Fig. 5g, the intensity of β wave during exercise state is much stronger than that at rest or
sleep status, which accords with the fact that β usually increases during physical exertion.

Clinical detection and depression detection

The knee jerk re�ex is classi�ed as a monosynaptic stretch re�ex. In clinical settings64, tendon re�ex
examinations are commonly employed to assess the circuit integrity of the stretch re�ex arc and to
evaluate motor neuron functionality. To diagnose spinal pathway function, we a�x CEAB electrodes to a
healthy volunteer's thigh muscle. Consistent with hospital tests, when the kneecap is tapped with a small
hammer, the CEAB electrodes capture a rapid surge in muscle electrophysiological activity, as depicted in
Fig. 6a. This observation aligns with �ndings from clinical studies and literature. Moreover, the CEAB
electrodes monitor voluntary thigh muscle contractions during leg extensions. Unlike the knee-jerk re�ex,
these stronger contractions manifest larger amplitudes and prolonged durations due to the engagement
of multiple motor units, resulting in more pronounced motor unit action potentials, as illustrated in
Fig. 6b.

Depression is a severe mental disorder characterized by persistent feelings of sadness and potential
suicidal tendencies65,66. According to the World Health Organization (WHO), as of 2023, over 264 million
people globally are a�icted with depression, underscoring the urgency for early diagnosis and
intervention67. Given EEG‘s ability to provide a direct re�ection of brain neurological activity with high
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temporal resolution, EEG is increasingly recognized as a potent tool for non-invasive depression
diagnosis68,69. Utilizing the CEAB electrode, we have designed a machine-learning approach to analyze
single-channel EEG data of subjects at rest state, facilitating swift and reliable depression diagnosis, as
depicted in Fig. 6c-f. Speci�cally, real-time data collection is conducted, followed by preprocessing with
Python 3.8. EEG signals inherently display temporal variability and dynamics, and different frequency
components correspond to different temporal and physiological states70. To build extensive training
datasets for machine learning, we segment the EEG data into 2-second intervals, incorporating a 50%
overlap to capture the intricate and dynamic attributes of EEG effectively (Fig. 6c). This windowing
strategy has been demonstrated to encapsulate relevant information across varied EEG types, thereby
enhancing classi�cation outcomes71. Our dataset encompasses 633 samples, balanced between healthy
and depression-a�icted samples. As showcased in Fig. 6d, we apply FFT to the original EEG signals,
delineating frequency bands and deriving eSense values via NeuroSky's algorithm72,73. This algorithm
can express the mental state information (attention and meditation) of the human brain with eSense
values. Then we extract two distinct feature categories from the EEG data: linear attributes, including
Variance, Absolute Power, Mean, and Coherence, juxtaposed against nonlinear attributes like Entropy and
C0-Complexity74(Fig. 6e). Linear features contain signal speci�city, whereas nonlinear attributes
underscore intricacy and stability74. Subsequently, these features are concatenated and then input into a
range of classi�ers, namely Supporting Vector Machine (SVM)75, K-Nearest Neighbor (KNN)76, XGBoost77,
and Random Forest (RF)78 for depression detection (Fig. 6f). As illustrated in Table 1, the RF performs the
best accuracy of 92.91%, recall of 92.91%, and precision of 93.19% on test dataset. Figure 6g further
illustrates the confusion matrix of RF models on depression prediction.

Table 1
Machine Learning model results.

  KNN XGBoost SVM RF

Precision 89.78% 89.78% 69.28% 93.19%

Recall 89.76% 89.76% 69.29% 92.91%

F1 score 89.77% 89.77% 69.28% 92.91%

To delve deeper into understanding feature contributions for predicting depression, we employed the Gini
importance method within scikit-learn for enhanced feature analysis79. Utilizing the RF model, individual
feature importance is computed and graphically depicted in Supplementary Fig. S12. The histogram
highlights four paramount features: mean attention, standard deviation σ, mean of the low γ band, and
mean of the δ band (Supplementary Fig. S13a-d). Approximately 80% of individuals with depression
exhibit diminished attention compared to healthy counterparts. Furthermore, ~ 20% of samples manifest
higher σ, where higher variance indicates greater emotion change among subjects with depression80.
Notably, the low γ band's sensitivity to emotional nuances indicates a trend that a majority of depression
patients register elevated low γ values, thereby identifying these metrics as potential depression
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biomarkers81,82. Additionally, over 80% of depression samples have lower mean δ values, which is
correlated to heightened psychological distress, potentially amplifying depression vulnerability83.
Leveraging CEAB electrodes, we build a single-channel RF model �nding digital depression biomarkers.
EEG with CEAB electrodes offers an e�cient, user-friendly, and feasible solution for depression detection
via a single-channel wearable EEG headband.

Hand gesture replication by robotic hands

Hand gestures play a pivotal role in conveying concise messages and carrying emotional implications,
making them essential in both realistic and digital communication, especially within human-machine
interaction applications84. While traditional methods of gesture sensing and recognition primarily depend
on algorithms to semantically interpret images or videos85–88, they often face challenges due to
environmental interferences such as obstructed objects and varying lighting conditions89. Unlike
traditional methods, EMG, which captures signals before muscle contraction, provides a robust solution
for hand gesture recognition without interference from external environmental factors90. We utilize CEAB
electrodes to record forearm EMG signals from volunteers performing six distinct hand gestures. The
captured signals are subsequently combined with sophisticated algorithms and embedded techniques to
instruct robotic arms to mimic the recorded hand movements.

Firstly, we collect an EMG dataset of different gestures from volunteers, encompassing categories of
"rest", "six", "eight", "good", "yeah", "ok", and "�st". These samples are carefully segmented into intervals
with 1000 data points with a 95% overlap, strategically designed to augment the dataset and encapsulate
essential biopotential information related to gesture motion. Subsequently, we establish a two-layer
Convolutional Neural Network (CNN) model tailored for e�cient gesture classi�cation. Figure 7a provides
a visual representation of this CNN model's architecture. The analysis begins by reshaping the input data
into a 2D array, followed by convolutional and pooling layers to extract pertinent features. The following
steps include �attening and deploying dense layers to achieve multi-label classi�cation. Figure 7b
presents the confusion matrix results for gesture recognition, where the predicted and actual type counts
are consistent, differing only in one or two instances. The training loss and accuracy are shown in
Supplementary Fig. S14, highlighting the model's gesture recognition capabilities. Our results achieve
99.78% for precision, recall, and accuracy due to larger signal differences (Supplementary Fig. S11b)
captured by CEAB electrodes among various gestures.

Subsequently, we utilize the algorithm to recognize gestures and instruct the robotic arms to replicate
human gestures. Upon feeding the forearm biopotential data of various gestures into the trained models,
the system returns a predicted label in approximately 150 ms. This label is then relayed to the robotic
arm, instructing it to execute the corresponding gesture. To account for the time delay required for the
robotic arm's movement, we set an appropriate delay before accepting the subsequent EMG input.
Figure 7c-e demonstrates the hand gestures replication by the robotic arm. Details of forearm biopotential
driving the robotic arm to imitate human gestures can be found in Supplementary Movie 4.
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Discussions
In conclusion, our study develops an ionic, �exible, dry, and self-healing electrode, named CEAB, through
the utilization of deep eutectic solvents (DESs) and ionically cooperative conductors. We propose a
streamlined method for crafting an ultrathin ionic electrode �lm, achieving a thickness of as small as
3.55 μm. The CEAB electrode has exceptional attributes, including high conductivity, minimized noise
levels, and the uninterrupted capture of epidermal biopotential signals (e.g., ECG, sEMG, EEG) during
dynamic detection. Through seamless integration with digital signal processing and analysis algorithms,
using a one-channel wearable device, the electrode adeptly identi�es abnormal EEG signals associated
with depressive patients in clinical scenarios. Furthermore, this integration enables hand gesture
repetition by robotic arms based on EMG signals, underscoring the transformative potential of this
technology in health monitoring and human-machine interactions.

Methods
Materials

Choline chloride (ChCl) (AR, 98%), Ethylene Glycol (AR, ≥ 99%), Acrylic acid (AA) (AR, ≥ 99%), Betaine (AR,
98%), Irgacure 2959 (AR, 98%), were all purchased Shanghai Macklin Biochemical Company (China). All
reagents are used without further puri�cation.

Preparation of CEAB �lm

To prepare the deep eutectic solvent (DES), we �rst mixed the hydrogen bond acceptor, choline chloride
(ChCl), and the hydrogen bond donor, EG, in a 1:2 molar ratio. Following this, the mixture was stirred at
100 °C for 2 hours. Then, acrylic acid (AA) was dissolved in the DES. Subsequently, we added betaine and
Irgacure 2959 to the solution and vigorously stirred the mixture for 1 hour until it dissolved completely,
resulting in a clear precursor solution. The precursor solution consisted of ChCl, EG, AA, and betaine in a
molar ratio of 2:4:4:1, and the weight percentage of 2959 was 0.1%. Afterward, the solution was allowed
to stand overnight to eliminate all bubbles. Next, we coated the CEAB precursor between two PET release
membranes pre-treated with silicone oil and a�xed it to the surface of a �at glass mold. Afterward,
another �at glass was positioned above. Uniform pressure was applied to the surface glass, and the
duration was set as 5 min. The thickness of the precursor layer could be controlled by adjusting the
pressure and duration applied to the glass surface. Finally, the glass mold was placed 5 centimeters
above a 365-nanometer UV lamp with an output of 10 watts and exposure of 5 minutes. After
photopolymerization, we rapidly removed the support PET �lm to obtain an independent ultra-thin organic
gel �lm.

Scanning electron microscope (SEM)

The gross morphology of a freeze-dried CEAB �lm was observed via the Hitachi SU8010 under an
accelerating voltage of 5 kV. The gel samples were then freeze-dried for 24 hours and sputter-coated with
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gold before imaging. For the gel/skin replica samples, a 3.55 and 200 µm gel �lm was cut into small
pieces with sharp edges and then directly attached to an Eco�exTM rubber skin replica. To remove the
remaining organic solvent, all samples were freeze-dried before being introduced to the SEM chamber.

Fourier Transform Infrared Spectroscopy (FTIR)

The samples were dried in a vacuum drying oven before testing. FTIR spectra of the samples were
recorded using a spectrometer (Thermo Scienti�c Nicolet™ iS50) within the wavenumber range of 400 to
4000 cm-1.

Thermogravimetric Analysis (TGA)

After drying the gels, thermodynamic properties were analyzed using a thermogravimetric analyzer
(NETZSCH's STA 449 F3 Jupiter®). The initial mass of the sample was 5-10 mg, and it was heated from
room temperature to 600  ℃ at a rate of 10 ℃/min under a nitrogen (N2) atmosphere.

Differential Scanning Calorimeter (DSC)

The thermal transition behavior of the polymers was investigated using differential scanning calorimetry
(Mettler-Toledo DSC 3). The initial mass of the sample was 20-50 mg, and heating was performed at a
rate of 10 ℃/min within the temperature range of –60 to 100 ℃ under a nitrogen (N2) atmosphere.

In the freezing stretch tests, Ag/AgCl gel and CEAB samples (6 cm in length, 1 cm in width, and 200 μm in
thickness) were exposed to -30  ℃ for a duration of 24 hours. Following this cold exposure, the samples
were twisted to assess their �exibility.

For the moisture retention tests, CEAB and Ag/AgCl gels with identical weight and shape were kept at
consistent temperatures of 37 ℃, while exposing them to varying relative humidity levels (RH: 10 % and
60 %) for a duration of 7 days. The weight of the samples was recorded at different time intervals during
the test. Weight loss was calculated using the following formula:

Weight percent (%) =*100 %

Here, represents the initial weight of the gel, and is the weight after storage at a speci�c time.

Electrical Measurement

To determine the ionic conductivities of the materials, we performed complex impedance measurements
using an electrochemical workstation (PARSTAT 4000A, Princeton) across a frequency range from 0.1 Hz
to 1 MHz, employing an alternating-current sine wave with an amplitude of 500 mV. In this procedure, a
CEAB sample was cut into a cylindrical shape with dimensions of 6 mm in diameter and 3 mm in depth,
and it was placed between two round steel electrodes. The material was kept at the speci�c temperature
of -25, -20, 0, 20, 25, 40, and 60 ℃ for 30 min before testing.



Page 14/32

To obtain the bulk resistance (R) of the materials, we identi�ed the intercept on the real axis of the
Nyquist plot at a high frequency, utilizing the Z-view software. Subsequently, the conductivity of the CEAB
was calculated using the formula σ = L / (A·R), where L represents the distance between the electrodes,
and a signi�es the cross-sectional area of the sample.

Evaluation of Mechanical Properties

The tensile mechanical properties were assessed through uniaxial tensile and uncon�ned compression
tests conducted using a LISHI LE3104 setup with a 10 N loading capacity. Different thickness of 3.55, 50,
150, 250, and 500 μm CEAB �lm was cut to dimensions of 100 mm × 20 mm. To prevent the occurrence
of cracks at the clamping positions, both ends of the sample were securely attached to two pieces of
paper before being connected to the �xture. The test was conducted with a consistent peeling speed of
30 mm/min.

For the assessment of interfacial adhesion properties, we employed a 90° peel-off test, as introduced in
Supplementary Fig. S13 and Supplementary Movie S4 in the Supporting Information. In this evaluation, a
3.55, 50, 250, and 500 µm thick CEAB �lm, cut to dimensions of 100 mm × 20 mm, was securely attached
to a fresh porcine skin specimen, respectively. The test was conducted with a consistent peeling speed of
30 mm/min.

Evaluation of Self-Healing Property

The precursor was cured for 5 min under UV light. After the photoreaction, a piece of elongated hydrogel
was cut into two sections, which were then covered. After 8 hours, the two sections are completely self-
healed under a photomicroscope.

In vitro Biocompatibility Testing

The biocompatibility of CEAB gel was assessed in vitro using the assay (CCK-8 kit, Yeasen, Guangzhou,
China). A piece of CEAB gel (2.0 g) is immersed in 10 mL of deionized water for 24 h at room
temperature. Then the mouse embryonic �broblasts cell line (NIH3T3) was plated in a 96-well plate (2000
cells/well) with six parallel Wells (n=6) in which NIH3T3 cells were cultured in Dulbecco's Modi�ed Eagle
Medium (DMEM) medium (HyClone, USA) and complete growth medium with 10% fetal bovine serum,
100 U mL-1 penicillin and 0.1 mg mL-1 streptomycin (Thermo Fisher Scienti�c, USA) at 37 ° C in 5% CO2.
The total volume of the medium used in this work was 100 uL. After 12h of cell culture, 10 μL CEAB gel
extract was added to the medium, and the cells were then incubated at 37 ℃ for 24 h. At the time point to
be measured, CCK-8 (10 μL), 10% of the total volume of the medium, was added and incubated for 2h in
the dark. The absorbance of the 96-well plate was measured at 450 nm using a microplate reader (Tecan
MicroplateReader Spark, USA). The cell viability is calculated according to the formula. The blank control
was not seeded with NIH3T3 cells in the 96-well plate, and the negative control was only added DMEM
complete medium after seeding NIH3T3 cells in the 96-well plate.
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Where ODS, ODC, and ODN were the OD values of the samples, blank control, and negative control,
respectively.

Cell Recovery

The frozen storage tube containing 1 mL of cell suspension was quickly shaken and thawed in a 37 ℃-
water bath, and 4 mL of medium was added to mix well. Centrifuge at 1000 rpm for 3 min, discard the
supernatant, add 1-2 mL culture medium, and then blow well. All cell suspensions were then added to a
culture dish with an appropriate complete culture medium.

Cell Passage

Discard the upper culture medium and rinse the cells with calcium- and magnesium-free PBS 1-2 times.
Add 1 mL of digestion solution (0.25% Trypsin-0.53mM EDTA) to the culture �ask, and place the culture
�ask in a 37°C incubator for 1 min. Then 2-3 mL of complete culture medium is added to terminate
digestion. After quick, gentle mixing, transfer the contents to a sterile centrifuge tube, centrifuge at 1000
rpm for 5 minutes, discard the supernatant, add 1-2 mL of culture medium, and resuspend the cells with
the appropriate complete culture medium in new culture dishes.

Water Vapor Transmission Rate (WVTR) test

Water vapor permeability was evaluated by measuring the weight of water in a bottle where the opening
was covered by the target �lms. Pure water (1 g) was placed in a sample bottle with a diameter of 15 
mm. The CEAB gel �lm (200μm) was attached to the opening of the bottle with an adhesive (Araldite,
Nichiban). This bottle was stored in a thermostatic chamber at 25  ℃ and a humidity of 42% for 5 days,
and the subsequent decrease in weight was measured. As a comparison sample, a 4-µm-thick Parylene
�lm, and a 50-μm-thick PDMS layer �lm were used. A bottle without any covering was used as the
reference sample.

Electrode/skin contact impedance and biopotential signals extraction

The electrode/skin contact impedance was measured by positioning two electrodes, namely commercial
Ag/AgCl gel electrodes (1 mm, 1.77 cm²) or CEAB electrodes (1.5 mm, 1.77 cm²), at a distance of 7 cm on
the anterior surface of a volunteer's forearm. These electrodes were then linked to the electrochemical
workstation (CHI 760E). Impedance spectra were captured within the frequency range of 1 to 104 Hz, with
the AC voltage amplitude �xed at 0.1 V.

The EMG signal recording setup comprises two main components: a microcontroller (Arduino UNO
microcontroller) and a detector (Muscle SpikerBox Pro). The EMG signals are captured by the
Spikershield box through potential differences between the working electrodes on the target area and the
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reference electrodes. Signal processing algorithms are applied to the collected data using Python for
fundamental signal analysis (Root-Mean-Square).

The ECG data acquisition device employs a portable, wearable chest adhesive ECG sensor based on the
BMD101 chip. The BMD101 chip comprises two main components: a low-noise ampli�er and an ADC
(Analog-to-Digital Converter). These components work in tandem, with the BMD101 chip capturing and
amplifying faint bioelectrical signals originating from the heart via chest electrodes. Once the ECG
signals are converted into digital form by the ADC, the BMD101 chip processes them digitally, including
tasks like �ltering, sampling, and data compression. Finally, the chip transmits the data to a smartphone
via Bluetooth, enabling real-time monitoring of cardiac activity and subsequent recording and analysis.
The ECG signals were analyzed using the Python envelope function.

In EMG testing, in cases recording the grip force muscle potential and collecting EMG signals during
various hand gestures, two CEAB electrodes were placed on the forearm, with a CEAB �lm used as the
reference electrode on the posterior elbow. These electrodes recorded signals generated by the
brachioradialis muscle. For cases involving the collection of EMG signals during knee re�ex tests, two
CEAB electrodes were positioned on the anterior thigh, and a CEAB �lm was applied to the knee as the
reference electrode. These electrodes captured signals generated by the quadriceps muscle. In cases
where EMG signals during �nger �exion and extension were collected, two CEAB electrodes were
positioned on the forearm. In cases where facial EMG is collected when a volunteer smiles, two CEAB
electrodes are attached to the risorius and zygomaticus, and a reference CEAB electrode is attached
behind the ear. The Ag/AgCl gel electrodes are also attached to the same locations in the cases as the
comparison.

The ECG signals were acquired by placing two CEAB �lm electrodes in speci�c positions: one below the
clavicle, in the 3rd intercostal space, near the heart, and the other in a position symmetrically aligned with
the midline of the chest. Subsequently, these electrodes were connected to an ECG sensor based on the
BMD101 chip's signal recording device. The acquired ECG signals could then be monitored in real time on
a laptop and subsequently analyzed using Python's envelope function.

In EEG measurements, CEAB electrodes were positioned according to the 10-20 system for electrode
placement on the head. The CEAB electrode was located at the FP1 site (at the left side of the forehead)
as the working electrode, with the FPz site (at the frontal region of the brain) serving as the reference
electrode. Another CEAB �lm electrode was placed behind the ear to serve as the ground electrode.

Motion artifact characterization. The electromechanical vibrator was placed near the working electrodes
(about 2 cm) to induce skin vibration, which is similar to vibration near the chest during body movement.

Long-time monitoring of EEG

Brain activity was assessed using EEG signals recorded with an ECG sensor based on the BMD101 chip.
The working electrode was positioned at the FP1 site, the reference electrode at the FPz site, and the
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ground electrode behind the ear. During the 12-hour monitoring period, the volunteer slept for 1 hour,
engaged in 0.5 hours of exercise, and �nally returned to a state of calm without removing the CEAB
electrodes. Subsequently, the EEG signal is analyzed using Python and Fast Fourier Transformation.

Depression detection

Depression data collection. We recruited 6 depressed and 6 healthy volunteers from the Fifth A�liated
Hospital of Wenzhou Medical University in China (all the depressed volunteers were diagnosed by the
Hamilton Depression Scale in the hospital). EEG signals were recorded by a portable TGAM EEG device
with a single channel. The ring-shaped EEG sensor was tied to the head, and all people were asked to
keep calm and their eyes closed for 1 minute without any interruption.

Depression data preprocess. Building upon the TGAM module, the embedded algorithms �ltered power
line frequency noise. The dataset encompassed both the raw EEG original values and transformed values
across various frequency bands. The data were �rstly cleaned by deleting invalid “0” values received at
the beginning stage, then aligned following the sampling frequency of 512 Hz. A 2-second duration of
data was set as a sample, with an overlap of 50%.

Features extraction. Twelve linear features including original value mean, original value σ (standard
deviation), attention mean, attention σ, δ mean, θ mean, low α mean, high α mean, low β mean, high β
mean, low γ mean, mid γ mean, low β mean / θ mean, high β mean / θ mean, and two nonlinear features
including Co complexity and Power Spectral Entropy were extracted as features for normal, depression
classi�cation.

Machine learning models construction. SVM, KNN, XGBOOST, and RF were constructed by sklearn toolkit,
python 3.8.

Hand gesture replication by robotic hands

Gesture dataset collection. Ten volunteers are instructed to repeat six different gestures—six, eight, good,
yeah, ok, and �st—each lasting 5 seconds, with a 5-second rest between consecutive gestures to prevent
muscle fatigue. This entire sequence is collected over 1 minute and repeated for ten volunteers. 

Data preprocess. The gesture data is �rstly sliced at the length of 1000, overlapped at 95%, normalized,
and then reshaped as 20×50 dimension.

CNN model construction. The CNN architecture is established by the Keras toolkit in Python 3.8.
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Figure 1

Schematic illustration for the preparation and application of CEAB �lms. a Chemical structure of ChCl,
EG, AA, zwitterions, and photoinitiator. b Fabrication of the CEAB �lms: �rstly, prepare the precursors;
secondly, cast the precursor between the PET �lms and maintain pressure exertion; thirdly, polymerize the
precursor. c Schematic structure of CEAB elastomer. d CEAB gel for epidermal biopotentials’ detection
and application.
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Figure 2

CEAB fabrication and characterization. a The relationship between thickness and pressure of CEAB �lm.
CEAB �lm morphology characterized byb SEM (scale bar 1 μm) and c AFM (scale bar 4 μm). d
Transmittance of CEAB �lm and photographs of logo covered by 200 μm thick CEAB �lms (inset). e ATR-
FTIR of individual components and CEAB �lm. f TGA curve of CEAB �lm. g DSC curve of CEAB �lm. h
Weight changes of CEAB and commercial hydrogel at 10%, 60% RH within 7 days. iDemonstration of the
electrical property of CEAB �lm: Nyquist plots at temperatures from -25 ~ 60 ℃.
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Figure 3

Mechanical properties and self-healing ability of CEAB �lms. a Representative true tension stress-strain
curves of CEAB �lms with variable thicknesses. b The bright-�eld microscope images of a 2 mm thick
CEAB �lm obtained at self-healing intervals of 0, 10 mins, and 8 h. c Representative curves of the peeling
force per width (F/W) versus displacement with variable thicknesses of the CEAB �lms. d The
representative curve of the shear strength versus displacement of a 500 μm thick CEAB �lm. e A snapshot
of the moment when the 500 μm thick CEAB �lm is peeled off from the dorsal hand.
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Figure 4

Conformability and Biocompatibility of CEAB �lms. a The conformability of CEAB �lms with different
thicknesses on the skin: The structure of a human hand (left) and optical images (right) depicting the
surface texture of the bare replica and the replica covered by 3.55 µm, 200 µm CEAB �lm, respectively. b
The SEM image of the replica covered by 3.55 µm, and 200 µm CEAB �lm, respectively. c CCK-8 results
and dmicroscope images of 3T3 cells cultured with regular medium or regular medium plus CEAB



Page 28/32

extracts at 12 h and 24 h, respectively. e The comparison of water vapor transmission rate for a 200 µm
thick CEAB �lm, a 50 µm thick PDMS, and a 4 µm thick PET �lm at RH 40% for 5 d.

Figure 5

Biopotentials acquisition based on CEAB electrodes and signals quality evaluation. a ECG measured by
Ag/AgCl (black) gel, CEAB electrode (red) without and with vibration. Rhythmics-relevant P, Q, R, S, and T
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waves are identi�ed, even when vibration is exerted near the CEAB electrode. b The SNR of the ECG signal
collected by Ag/AgCl (purple) gel, and CEAB (blue) electrode at static and vibration state, respectively. c
The EMG SNR (full lines) and noise RMS (dotted lines) of Ag/AgCl (black) gel, CEAB electrode (red). d The
EMG signals recorded using Ag/AgCl (black) gel and CEAB electrode (red) during grip force exertions of
50 N, 320 N, and 650 N, respectively. e The facial EMG signals recorded by Ag/AgCl (black) gel and CEAB
electrode (red) during smiling episodes. f The original EEG signals recorded by CEAB electrode while g the
β band EEG signals obtained through FFT of the original EEG signals, recorded during the volunteer's
engagement in exercise, calmness, and sleep.
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Figure 6

Clinical detection and depression detection based on CEAB electrodes. a The knee jerk re�ex EMG signals
collected by CEAB electrodes during 4 hammer taps. b The thigh muscles' EMG signals are collected by
CEAB electrodes during leg voluntary contraction. c The EEG signal preprocesses and sample
segmentation. d Eight frequency bands are acquired after FFT and eSense values are extracted. e The 16
features are extracted, with 14 linear and 2 non-linear included. f The feature data are fed into machine
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learning models for training and classi�cation. g Confusion matrix of depression prediction by RF model
on test sets, with true categories along the row and predicted types along the column.

Figure 7

Gesture recognition and gesture replication by robotic hands. a Architecture of the gesture-recognition
CNN model. b Confusion matrix of gesture recognition, with actual gesture type along the rows and
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predicted gesture type along the columns. By combining the signal acquisition with CEAB electrodes and
data analysis with the CNN model, the EMG biopotentials can instruct the robotic arm to perform the
gesture of c yeah d �st e ok.
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